Random Time Step Probabilistic Methods for Uncertainty Quantification in Chaotic and Geometric Numerical Integration

نویسندگان

  • ASSYR ABDULLE
  • GIACOMO GAREGNANI
چکیده

A novel probabilistic numerical method for quantifying the uncertainty induced by the time integration of ordinary differential equations (ODEs) is introduced. Departing from the classical strategy to randomize ODE solvers by adding a random forcing term, we show that a probability measure over the numerical solution of ODEs can be obtained by introducing suitable random time-steps in a classical time integrator. This intrinsic randomization allows for the conservation of geometric properties of the underlying deterministic integrator such as mass conservation, symplecticity or conservation of first integrals. Weak and mean-square convergence analysis are derived. We also analyze the convergence of the Monte Carlo estimator for the proposed random time step method and show that the measure obtained with repeated sampling converges in mean-square sense independently of the number of samples. Numerical examples including chaotic Hamiltonian systems, chemical reactions and Bayesian inferential problems illustrate the accuracy, robustness and versatility of our probabilistic numerical method. AMS subject classifications. 65C30, 65F15, 65L09

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Non-Intrusive Approaches for Wiener-Askey Generalized Polynomial Chaos

Polynomial chaos expansions (PCE) are an attractive technique for uncertainty quantification (UQ) due to their strong mathematical basis and ability to produce functional representations of stochastic variability. When tailoring the orthogonal polynomial bases to match the forms of the input uncertainties in a Wiener-Askey scheme, excellent convergence properties can be achieved for general pro...

متن کامل

Probabilistic Integration: A Role in Statistical Computation?

Probabilistic numerical methods aim to model numerical error as a source of epistemic uncertainty that is subject to probabilistic analysis and reasoning, enabling the principled propagation of numerical uncertainty through a computational pipeline. In this paper we focus on numerical methods for integration. We present probabilistic (Bayesian) versions of both Markov chain and Quasi Monte Carl...

متن کامل

Image encryption based on chaotic tent map in time and frequency domains

The present paper is aimed at introducing a new algorithm for image encryption using chaotic tent maps and the desired key image. This algorithm consists of two parts, the first of which works in the frequency domain and the second, in the time domain. In the frequency domain, a desired key image is used, and a random number is generated, using the chaotic tent map, in order to change the phase...

متن کامل

Comparative Study of Random Matrices Capability in Uncertainty Detection of Pier’s Dynamics

Because of random nature of many dependent variables in coastal engineering, treatment of effective parameters is generally associated with uncertainty. Numerical models are often used for dynamic analysis of complex structures, including mechanical systems. Furthermore, deterministic models are not sufficient for exact anticipation of structure’s dynamic response, but probabilistic models...

متن کامل

Efficient Uncertainty Quantification with Polynomial Chaos for Implicit Stiff Systems

The polynomial chaos method has been widely adopted as a computationally feasible approach for uncertainty quantification. Most studies to date have focused on non-stiff systems. When stiff systems are considered, implicit numerical integration requires the solution of a nonlinear system of equations at every time step. Using the Galerkin approach, the size of the system state increases from n ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017